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Abstract—In this paper, we present a multiharmonic model
able to allow for general nonlinear optical media [1]. As a
particular example, two- and three-photon processes are con-
sidered here. The numerical model is based on the finite element
method that allows to take into account the inhomogeneities
of the refraction index due to the nonlinearities. It consists of
several harmonic equations at various frequencies coupled via
some nonlinear terms. As an illustration we propose a simple
homogeneous uniform slab made of non-linear material but
illuminated by three plane waves in order to create an artificial
periodic structure with a fictitious permittivity. This system
exhibits a non trivial and quite complex behavior because of
the induced diffraction grating.

I. MULTIHARMONIC NONLINEAR MODEL

In this paper, we propose a numerical model for nonlinear
optics based on a systematic approach of the nonlinearity in
the frequency domain together with a very general setting via
the finite element method. This model aims at applications
in nanophotonics since the size of the scattering objects are
of the same order of magnitude as the wavelength of the
incident waves that are infrared or visible light. Considering
a given incident monochromatic electric field of pulsation ωI ,
we would like to solve the nonlinear vector wave equation:

∇× (µ−1∇× E) + ∂2
t D = 0,

for a given geometry and where the material properties are
D = ε0E + P and B = µ0H. We assume here that the
polarization P is of the form:

P(s, t) = P(0)(s)+∑
n∈N

ε0

∫ ∞
−∞

dω1 · · ·
∫ ∞
−∞

dωn χ
(n)(s, ω1, · · · , ωn)

Ê(s, ω1) · · · Ê(s, ωn)e−i(ω1+···+ωn)t ,

where Ê(s, ω) is the Fourier transform of E with respect to
time. We set Ep := Ê(s, pωI) and we note that E−p =
Ep. The χ(n) tensors describe the physical behavior of the
media. We are interested here in the harmonic generation
and therefore we now make the simplifying assumption that
χ(n)(ω1, · · · , ωn) = 0 if ωi 6= pωI , p ∈ Z so that the electric
field is E(s, t) =

∑
p∈Z Ep(s)e−ipωIt. To further simplify and

to obtain tractable problems, we set χ(n) = 0 if n > 3.
We introduce the following notations for the nonlinear terms
involving the χ(n):

bEp1 , · · · ,Epnc := χ(n)(p1ωI , · · · , pnωI)Ep1 · · ·Epn

and for the linear part Mlin
p of the wave operators:

Mlin
p (Ep) := −c2∇× (∇× Ep) + (pωI)2ε(1)r (pωI)Ep

where ε(1)r = 1+χ(1). With the previous assumptions, the time
domain problem becomes an infinite set of coupled harmonic
equations:

Mlin
p (Ep) + (pωI)2

(∑
q∈Z
bEq,Ep−qc+

∑
(q,r)∈Z2

bEq,Er,Ep−q−rc
)

= 0, for p ∈ Z.

Moreover, we limit our nonlinear phenomena to two- and
three-photon processes. The corresponding problems are en-
countered in numerous nonlinear optics experiments involving
second and third harmonic generation. Therefore we have
p ∈ {−3,−2,−1, 1, 2, 3}, and a system of three coupled
nonlinear equations is obtained.

II. INDUCED GRATING

We consider a simple uniform slab made of non-linear
material but illuminated by three plane waves in order to create
a periodic structure with an apparent permittivity. This system
exhibits a non trivial and quite complex behavior because of
the induced diffraction grating.

In our model, the geometry is invariant along the z-axis and
an appropriate principal axis for the χ(n) tensors is considered
here together with a polarization of the electric field along
the axis of invariance (the z-axis) in order to reduce the
problem to a scalar two-dimensional one (in the xy−plane).
The numerical implementation is performed in COMSOL
Multiphysics by a direct coding of the weak formulation of
the three coupled PDE. The discretization is performed with
triangular finite elements. The incident field is a set of three
plane waves imposed via a virtual antenna [2], [3], a special
numerical technique specially designed for these nonlinear
scattering problems.

We are interested in the direction along which the three
harmonics of the field scatter and we can analyze the results in
terms of the diffraction grating theory [4], [5]. Outside the slab
(we are therefore in an homogeneous and linear media), each
electric field component Ep satisfies a Helmholtz equation. We
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Fig. 1. The geometry of the system is an infinite slab. It is infinite along
the z-axis, the invariance direction of the chosen incident field, and along
the x-axis, the horizontal direction of the cross section shown here. Made
up of β Barium Borate (BBO), it is illuminated by three plane waves, one
with a normal incidence (amplitude A0) and two with a symmetric oblique
incidence (amplitude A1) of 0.439 rad with respect to the normal. Along the
finite dimension, the thickness is equal to 7λI . Harmonics are generated in the
nonlinear medium. Due to the interferences of the different waves oscillating
at ωI (the pattern of the field intensity of the incident waves is shown in
color inside the slab), a structure (periodic along the x-axis and, therefore,
equivalent to a diffraction grating or a finite photonic crystal) is induced in
the cross section of the slab. This induced grating generates several orders for
the fundamental frequency ωI and for the higher harmonics.

write their propagating solutions as

Ep(x, y) =
∑
n∈Up

{b(r)p,ne
i
(

2πnx
d +(k2

p−( 2πn
d )2)1/2y

)
+ b(t)p,ne

i
(

2πnx
d −(k2

p−( 2πn
d )2)1/2y

)
}ẑ,

with kp = pωI/c and d is the period of the induced grating
obtained from the incident waves. The coefficients b(r)p,n (resp.
b
(t)
p,n) denotes the complex amplitudes of the n-th order of

the reflected (resp. transmitted) wave at pulsation pωI , and
Up := {n ∈ Z : k2

p − ( 2πn
d )2 > 0}. We note that k2

p is larger
for higher harmonics, so whereas only the orders −1, 0 and 1
are present in E1, the E3 harmonic contains orders from −3 to
3 (this depends on the wavelength and the tilts of the incident
beams).

It is worth noting that the amplitude of the n-th order
of the p-th harmonic (that is b(r)p,n or b(t)p,n) is not monotonic
with respect to the amplitude of the incident field, as is seen
in the Figs. 2 and 3 where the third harmonic is taken as
an example (due to the reflection symmetry along the y-
axis of the system, b(t)3,−n = b

(t)
3,n). These functions present

resonances, which means that higher incident intensities may
give lower nonlinear effects. The coefficients are normalized
so that

∑
n∈U3

| b(t)3,n |2 is equal to 1.
With a very simple system involving a non-linear optical

material, we have shown that non-linear scattering problems

in the resonant domain (i.e. when the size of the device is
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Fig. 2. The square of the modulus of coefficient | b(t)3,0 |2 of the order
0 transmitted propagating waves at the frequency 3ωI (vertical axis) as a
function of the amplitude of the inclined incident field (left axis) and of the
incident field orthogonally impinging on the slab (right axis).
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Fig. 3. The square of the modulus of coefficient | b(t)3,1 |2 of the order
1 transmitted propagating waves at the frequency 3ωI (vertical axis) as a
function of the amplitude of the inclined incident field (left axis) and of the
incident field orthogonally impinging on the slab (right axis).

similar to the wavelength) may exhibit a highly non trivial
behavior.
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